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Quantum chaos in a double square well: An approach based on Bohm’s view
of quantum mechanics
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~Received 30 April 1998!

We study the dynamics of a quantum particle in a double square-well potential within a deterministic
framework using Bohm’s quantum mechanics. Phase portraits, Fourier spectral analysis, Poincare´ sections, and
Lyapunov exponents clearly indicate that the particle undergoes periodic, quasiperiodic, and chaotic motions
depending on the initial form of the wave packet. We also make a detailed comparison between the predictions
of the present approach and those of conventional quantum mechanics for the same problem.
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Quantum chaos is an area of much research activity
spite of a lack of consensus about its very meaning, de
tion, or even its observability. Because of the lack of a dir
correspondence between classical trajectories in phase s
and the observables in conventional quantum mechanics
characterization of chaos in the latter is quite controvers
As we know, classical chaotic behavior is usually defined
the unique property of a nonlinear system which under c
tain conditions becomes highly sensitive to its initial con
tions. When a system is in the chaotic state, initially neig
boring phase-space trajectories will separate exponential
the system evolves in time. This definition, however, see
to be inadequate to study chaos in quantum systems sin
presumes that the trajectory of a particle is a well-defin
quantity. Hence, the conventional interpretation of quant
mechanics is not appropriate to describe quantum chaos
same way we do in classical mechanics.

A variety of methods have been proposed to identify
criteria by which a quantum system is chaotic@1–3#. One
such method is to study the evolution of the mean value
the operators and the structure of the energy spectrum.
energy levels have been found to have different statist
distribution when the corresponding classical system is c
otic ~Wigner statistics! or regular~Poisson statistics! @2,3#.
Although the energy level spacing statistics of a variety
quantum systems that are chaotic when treated classicall
described by Wigner statistics, it was found recently@4# that
two systems, namely, the hydrogen atom in magnetic fi
and a two-dimensional quartic oscillator, which are chao
classically, have in the quantum regime an energy level sp
ing distribution drastically different from the expecte
Wigner distribution. It has also been conjectured@5# that the
distribution of the fluctuations of the spectral density
states of a quantum system must be Gaussian if the co
sponding classical counterpart is strongly chaotic, or n
Gaussian if the classical system is integrable. Another
proach to detect the presence of quantum chaos is to as
that its signature can be inferred directly from the behav
of the wave function@6,7#. For instance, the wave packet
the quantum counterpart of a classical chaotic system
PRE 581063-651X/98/58~5!/6851~4!/$15.00
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found to spread rapidly over regions where the potentia
significantly nonlinear@8#, or the wave function develops
highly complex pattern in the chaotic region@9#. In spite of
these attempts, finding unambiguous fingerprints of quan
chaos is still very much an open problem. In any event,
field of quantum chaos is usually restricted to the study
quantum systems whose classical limits are chaotic.

An alternate way to deal with quantum dynamics is
using the so-called quantum theory of motion~QTM!, which
was proposed some time ago by Bohm@10# ~and similarly by
de Broglie @11,12#! but that only recently has gained som
attention@13–15#. Bohm’s theory gives exactly the same r
sults as conventional quantum mechanics, yet it goes
step ahead of the Schro¨dinger equation insofar as makin
precise statements about the actual trajectories of a si
particle ~Bohm’s postulate!. Hence, QTM seems to be
more appropriate framework for investigating quantu
chaos. Actually, Bohm and Hiley were the first to put for
the idea of applying QTM to quantum chaos, namely in t
problem of a single particle confined in a two-dimension
box @13#. About the same time, Holland@15# also suggested
that the concepts of chaos from classical physics could
extended to the particle trajectories of Bohm’s mechanic

In this work we use Bohm’s theory to investigate the d
namics of a particle in a double square-well potential, that
a square barrier embedded in an infinite well. In a rec
paper, Parmenter and Valentine@16# argued that a one
dimensional quantum system could not exhibit chaos wit
the QTM framework. We find that a one-dimensional syst
can indeed exhibit chaotic behavior, in contrast to Parme
and Valentine’s assertions. To our knowledge, ours is
first application of Bohm’s mechanics to the study of qua
tum chaos in a one-dimensional system. We believe thi
also the first comparison between the predictions of QT
and conventional quantum mechanics about the chaotic
havior of a quantum system.

The chaotic behavior of a particle in the double-well p
tential was discussed recently by Ashkenazyet al. @6# and
also by Berkovitset al. @7# within the context of conven-
tional quantum mechanics. Ashkenazyet al. found that the
6851 © 1998 The American Physical Society
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time evolution of an initially Gaussian wave packet in
double square-well potential shows a complex behavior. T
was believed to be induced by tunneling through the bar
since such complex behavior for the wave packet was
observed in the absence of the barrier. Such a behavior
then interpreted as a signature of quantum chaos. On
other hand, Berkovitset al. @7# tackled the same problem b
analyzing the distribution of energy levels about the top
the barrier. They found that the distribution of energ
slightly above the barrier is closer to Wigner statistics th
for other values of energy, thus indicating that the system
chaotic for energies just above the barrier level. One sho
note that in the work of Ashkenazyet al., all the energy
levels included in their Gaussian packet are below the he
of the barrier.

According to QTM, a single quantum-mechanical obje
consists of a particle of massm enveloped in a physically
real field~thec field! which guides the particle according t
the guidance formulaEq. ~1! below. The field satisfies the
time-dependent Schro¨dinger equation~TDSE!, and the par-
ticle motion is obtained from the equation

mv5¹S, ~1!

whereS(x,t) is the phase of the wave function. For a giv
external potentialV(x), the trajectory of a particle and th
time evolution of its dynamical variables are determin
once its initialc field and its initial position are given. Th
phaseS(x,t) of the wave function satisfies the nonlinear d
ferential equation

]S

]t
1

~¹S!2

2m
1V1Q50, ~2!

where Q52 (\2/2m)¹2R/R is the so-called quantum po
tential andR is the amplitude of the wave function. Equatio
~2! can be interpreted as a Hamiltonian-Jacobi equation
scribing the classical trajectory of a particle of massm mov-
ing in the potentialV1Q. The equivalent Newtonian form
for the equation of motion is

m
d2x

dt2
52¹~V1Q!ux5x~ t! . ~3!

Therefore, in the QTM framework quantum dynamics
similar to classical dynamics, with an important addition: t
particle is subjected not only to a classical external poten
V(x), but also to a quantum internal potentialQ(x,t). The
latter depends on both the external potential and the form
the initial wave packet.

Owing to the nonlinear nature of the quantum poten
and its time dependence, a particle subjected to a harm
classical potentialV(x) may show a chaotic behavior in th
quantum regime, which would not be present had the part
been treated classically@13,16#. Pattanayak and Schive@17#,
by using a semiquantal approximation for the double-w
potential, were able to find quantum chaos for an exten
classical potential which effectively included effects of qua
tum fluctuations, thereby showing that the presence of qu
tum effects could induce chaos.

One of the primary goals of the present work is to co
pare the predictions of conventional quantum mechan
is
r

ot
as
he

f
s
n
is
ld

ht

t

e-

al

of

l
ic

le

ll
d

-
n-

-
s

with those of Bohm’s theory regarding chaotic behavior
the problem of a particle confined to a double square-w
potential. In order to make such comparison, we use
same parameters as those in Refs.@6,7#, namely the barrier
half-width a51 and the half-width of the wellL555. In all
our calculations we have assumed\52m51. For the barrier
height, however, we takeV50.1 in order to enhance th
tunneling probability.

In all cases discussed below, we use a linear combina
of the first few states with energy less than the barrier ene
as the initial wave function. Letun

1(x) andun
2(x) denote the

even and odd eigenfunctions for the double square-well
tential with eigenvaluesEn

1 andEn
2 , respectively. The posi-

tion of the particle is determined by simultaneous integrat
of both the TDSE and the guidance formula, Eq.~1!. We
performed the numerical integration of Eq.~1! by using a
fourth-order Runge-Kutta integration procedure with integ
tion stepdt50.01– 0.001. The integration was performed
to times oft51.53105.

Consider the dynamics of a particle initially in the qua
tum statec(x,0)5u3

2(x)1 iu3
1(x) whose position is located

at the right of the barrier, atx053. We find that the particle
undergoes a periodic behavior, with a period given byT
52p\/(E3

12E3
2). The particle is periodically ‘‘tunneling’’

since the barrier energyV.E3
1.E3

2 . The phase portrait is
shown in Fig. 1. In that case, the largest Lyapunov expon
is zero. A simple explanation for that phenomenon, from
QTM point of view, is that the particle is not only subject
the barrier potential but also to the oscillating quantum p
tential generated by thec field. As a result, the effective
potential near the center of the well is no longer constant
oscillating in time, leading to an effective energy barrier th
is smaller than the kinetic energy of the particle in the sa
region. A change in the form of the wave function att50
leads to a change in the form of the quantum potential a
therefore, to an altogether different dynamics. For instan
by taking c(x,0)5u1

2(x)1u2
1(x)1 iu1

1(x) and the same
initial position x053, the particle undergoes a quasiperiod
behavior, as shown in Figs. 2~a!–2~c!. The quasiperiodic be-
havior can be readily seen from the Poincare´ plot @Fig. 2~b!#,
where all the points fall on a closed curve. In that case,

FIG. 1. Phase-space portrait for a quantum particle trapped
double square-well potential. The system of units is such tha\
52M51 and the length unit is the barrier half-widtha. The initial
position wasx053.0 and the wave function att50 was given by
c(x,0)5u3

2(x)1 iu3
1(x). The system is periodic with periodT

52p/v and angular frequencyv5(E3
12E3

2)/\.
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two largest Lyapunov exponents are equal to zero. The F
rier spectral analysis shows a sharply defined peak distr
tion, as depicted in Fig. 2~c!. If the initial wave function has
the form c(x,0)5(n51

4 un
1(x)1 iu5

2(x), the particle under-
goes a chaotic behavior for the same initial position,
shown in Figs. 3~a!–3~c!. The Poincare´ plot consists of
points that are now scattered in the phase-space plane
the power spectrum shows the typical sharp peaks in a b
ground of a broadband distribution, features which are si

FIG. 2. Particle in a double square-well potential in a quasip
odic regime. In the system of units used,\52m51, and the length
unit is the barrier half-widtha. ~a! Plot of the phase-space traje
tory. The initial position was taken asx053.0 and the wave func-
tion at t50 was given byc(x,0)5u1

2(x)1u2
1(x)1 iu1

1(x); ~b!
Poincare´ section for the velocity and position using a strobe f
quency ofv5(E2

12E1
1)/\; ~c! power spectral density as a func

tion of frequencyf 52p/v obtained from a time series forx(t).
The system is quasiperiodic.
u-
u-

s

nd
k-
i-

lar to those found in classical chaotic systems. The larg
Lyapunov exponent calculated numerically from the time
ries of x(t) using the algorithm of Eckmannet al. @18# is
found to be positive (l50.1060.02), typical of a chaotic
state. By keeping in mind that the energy levels included
the wave packet are lower than the barrier height, one
see that the above result is different from that of Berkov
et al. @7#, which claims that quantum chaotic behavior shou
happen only for energies just above the barrier level.

In order to make a comparison with the results of As

i-

-

FIG. 3. Chaotic behavior of a particle in a double square w
Again, the units are such that\52m51, and the unit of length is
the barrier half-widtha. ~a! Phase-space diagram. We took th
initial position x053.0 and the wave function att50 as c(x,0)
5(n51

4 un
11 iu5

2(x); ~b! Poincare´ section for the velocity and po
sition using a strobe angular frequencyv5(E5

22E1
1)/\; ~c! power

spectral density as a function of frequencyf 52p/v obtained from
a time series forx(t). The system is in a chaotic state.
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kenazyet al. @6#, we now elect to represent the initial state
the particle as a Gaussian wave packet initially placed on
left of the barrier at positionx0 , with an average momentum
k0 , and a spread governed bys0 . Thus, we setc(x,0)
5exp@ik0x2(x2x0)

2/2s0
2#. By taking k050.1, s055, x05

225, andV55 for the barrier height, the same paramet
used in Ref.@6#, we find that a particle initially located at th
center of the packet undergoes a quasiperiodic motion
not a chaotic motion as predicted by those authors.

We should point out that from the QTM point of view
there is a classical analog to the problem discussed in
present work. It is the problem of a particle trapped in
quartic potential well in the presence of an external osci
tory force field. The potential energy of the model is giv
by

V~x!5ax42bx21cx cos~v0t !, ~4!

wherea,b are positive constants,c is a constant, andv0 is
the frequency of a forcing field. The oscillatory field in th
classical case plays a role similar to that of the quant
potential for the corresponding quantum case. The effec
the forcing field is to alter the shape of the double-well a
effectively to produce oscillations in the height of the barri
In fact, the classical problem defined by Eq.~4! has already
been studied by Reichl and Zheng@19# and it shows simi-
larities in its dynamical behavior with the quantum doub
square-well potential discussed here. The system under
periodic, quasiperiodic, and chaotic behaviors for an app
priate choice of the parameter in the potential. The Poinc´
plots are similar to those found in the quantum problem.
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To summarize, we have shown that within Bohm’s inte
pretation of quantum mechanics, a particle in a on
dimensional square double-well potential can undergo c
otic motion, contrary to claims found in the literature th
precluded quantum chaos in one-dimensional systems@16#.
In addition, based on our definition of chaos we obtain
sults that are different from those of Refs.@6# and@7#. In one
instance, we find quantum chaos behavior even when
energy levels used in the wave packet are lower than
barrier height, contrary to Ref.@7#. The wave packets were
built from the ground state and a few low-lying excited sta
of the double-well, all of which involve a finite\. The es-
sential ingredients for our results are the finiteness of\, the
confining walls, and the Bohmian trajectories. We belie
however, that the barrier is unimportant for the occurrence
chaos in the well. That is what happens in the quant
square billiard, the two-dimensional version of the sing
well, where we find instances of chaotic Bohmian trajec
ries even in the absence of internal barriers@20#. We are still
investigating the problem of what happens to the trajecto
in the semiclassical limit. In the case where the initial wa
function is a Gaussian packet, we find quasiperiodic mot
instead of the chaotic motion reported in Ref.@6#.
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